
Theoretical and computational bounds for m-cycles of the

3n + 1 problem

John Simons (Groningen)∗ Benne de Weger (Eindhoven)∗∗

version 1.44†, August 31, 2010

Abstract

An m-cycle of the 3n+1-problem is defined as a periodic orbit with m local minima. In this article
we derive lower and upper bounds for the cycle length and the elements of (hypothetical) m-cycles.
In particular, we prove that there do not exist nontrivial m-cycles for 1 ≤ m ≤ 75. Our proofs
are based on transcendental number theory, computational diophantine approximation techniques,
and a not straightforward generalization of the approach of Steiner and Simons on 1-cycles and
2-cycles respectively.
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1 Introduction

1.1 General

The 3n + 1-problem is a well known problem in elementary number theory. Let n be a natural
number, and consider the sequence generated by iteration of T (n) = 1

2 (3n + 1) if n is odd,
T (n) = 1

2n is n is even. Numerical verification indicates that for all natural numbers finally the
cycle {1, 2} appears. A proof of this so called 3n+ 1-conjecture is lacking sofar, in spite of various
approaches to the problem. See Lagarias [La] and Wirsching [Wi] for extensive overviews on the
3n+ 1-problem.

We call a cycle an m-cycle if the numbers in it appear in m sequences, each consisting of an
increasing subsequence of odd numbers, followed by a decreasing subsequence of even numbers.
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Theoretical and computational bounds for m-cycles of the 3n+ 1 problem

Let such an m-cycle contain in total K odd numbers and L even numbers. The cycle {1, 2} is a
1-cycle, and in 1977 Steiner [St] proved that other 1-cycles do not exist. Any m-cycle containing
natural numbers greater than 2 is called nontrivial, and in 2004 Simons [Si] proved the nonexistence
of nontrivial 2-cycles.

In this paper we generalize the approach of Steiner and Simons, and for an arbitrary value of m
we derive the following:

1. An upper bound for Λ = (K + L) log 2 − K log 3 that is exponential in K, following from
estimates for m-cycles;

2. A lower bound for Λ that is subexponential in K, following from transcendence theory;

3. Upper bounds for K and L, and for the minimal element xmin of the cycle, following from
comparing the upper and lower bounds for Λ. These upper bounds appear to be exponential
in m.

Further, for ’small’ and ’medium’ values of m we derive

4. Lower bounds for K and L, following from brute force computations and diophantine ap-

proximation techniques (continued fractions, lattice basis reduction) applied to
log 3
log 2

.

For ’small’ values of m (up to m ≤ 75) the lower bound of 4. is larger than the upper bound of 3.
For ’medium’ values of m (up to m ≤ 515 620) the diophantine approximation techniques lead to
an improvement of the upper bounds for K, L and xmin, which remain exponential in m.

1.2 m-Cycles of the 3n + 1-problem

We study periodic sequences {T k(n)}, i.e. we do not consider unbounded sequences. Without loss
of generality we’re not interested in nonperiodic parts, so if necessary we replace n by some T k(n)
which is in the periodic part. Hence we may assume that the sequence is purely periodic, i.e. there
exists an integer p ≥ 1 such that in the periodic sequence {n, T (n), T 2(n), . . . , T p−1(n), T p(n), . . .}
it is the case that T p(n) = n (we may take p minimal with this property, but for our arguments
that is not essential). We consider only the period, i.e. {n, T (n), T 2(n), . . . , T p−1(n)}. We further
may assume that T 0(n) = n is at a local minimum in the sequence (not necessarily the global
minimum).

Let there be m local minima in the periodic sequence, with indices t0, t1, . . . , tm−1 such that 0 =
t0 < t1 < . . . < tm−1 < p. Then there are also m local maxima, say with indices s0, s1, . . . , sm−1.
As each maximum lies in between two minima, we may assume 0 = t0 < s0 < t1 < s1 < . . . <
tm−1 < sm−1 ≤ p− 1. We call such a periodic sequence an m-cycle. Define xi, yi as the values of
the local minima and maxima, viz.

xi = T ti(n), yi = T si(n).

We put ki = si − ti for i = 0, . . . ,m − 1, and `i = ti+1 − si for i = 0, . . . ,m − 2, and `m−1 =
p+ t0 − sm−1. Further we put

K =
m−1∑
i=0

ki, L =
m−1∑
i=0

`i.

The sequence thus starts with an odd number x0, increases in k0 steps until an even number y0 is
encountered, then decreases in `0 steps until an odd number x1 is encountered, again increases in
k1 steps until an even number y1 is encountered, etcetera.

We call the m-fold repeated 1-cycle {1, 2, 1, 2, . . . , 1, 2} the trivial m-cycle.
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1.3 Crandall’s lemma

For a nontrivial m-cycle, put xmin = min{x0, x1, . . . , xm−1}. By X0 we denote a lower bound for
xmin that is known to be true at a certain point in time. At the moment of writing this (August
31, 2010) it is known from extensive computations by Tomás Oliveira e Silva [OS] that

xmin > X0 = 5 · 260 > 5.7646 · 1018.

Eric Roosendaal’s independent computations [Ro] have reached xmin > 890× 250 > 1.0020 · 1018.
The computations are going on1. The rate of improvement over the period June 2004 to January
2009 has been on average approximately 3.5 · 1015 per day (see [OS]).

Let δ =
log 3
log 2

= 1.5849 . . .. Throughout this paper this number δ plays a central role. Let its con-

tinued fraction expansion be given by δ = [a0, a1, a2, . . .] = [1, 1, 1, 2, 2, 3, 1, 5, 2, 23, 2, 2, 1, 1, 55, . . .],
with convergents

pn
qn

= [a0, a1, a2, . . . , an] for n = 0, 1, . . ..

Crandall [Cr] showed the following result.

Lemma 1 (Crandall, 1978)
If
pn
qn

is any convergent to δ with n ≥ 4, then for a nontrivial m-cycle

K > min
{
qn,

2xmin

qn + qn+1

}
.

As a consequence, we have the following result.

Corollary 2

K > 9.0240 · 108.

Proof. This follows immediately from Lemma 1, the present value for X0, and the fact that
q19 = 397 573 379, q20 = 6 189 245 291, and q21 = 6 586 818 670. 2

In this paper we generalize Crandall’s Lemma for m-cycles, which in general results in sharper
lower bounds for K.

1.4 Known results on the nonexistence of cycles

Steiner [St] proved in 1977 the nonexistence of nontrivial 1-cycles. He assumes the existence of a
1-cycle with k odd numbers and ` even numbers, and proves the following partial results:

1. An inequality for the ratio
k + `

k
;

2. A numerical lower bound for k, from which it follows that
k + `

k
must be a convergent from

the continued fraction expansion of δ;

3. An upper bound for k from a theorem of Baker [Ba] on linear forms in two logarithms;

4. A (very effective) lower bound for the partial quotients in the continued fraction expansion
of δ.

1It seems that Oliveira da Silva has stopped since January 2009.
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Numerical calculation of partial quotients then shows that the only 1-cycle that satisfies these
conditions is the trivial one.

Crucial in Steiner’s proof for the nonexistence of 1-cycles is (implicitly) the inequality 0 < (k +

`) log 2− k log 3 <
1

xmin
. The right hand side is exponentially small in k, since the existence of k

successive odd numbers starting with x0 implies that x0 = a2k−1 ≥ 2k−1. Hence
k + `

k
must be

a convergent of δ for k ≥ 5. This inequality has a ”natural” generalization for 2-cycles in the form

of 0 < (K + L) log 2 −K log 3 <
1
x0

+
1
x1

, however the convergent argument fails because k0 or

k1 can be small even if K is large. As has been remarked by Lagarias [La], the result of Steiner’s
proof seems rather weak, considering the strength of the underlying number theory.

Simons [Si] proved in 2004 the nonexistence of nontrivial 2-cycles. By exploiting the average values

of k0 and k1 he derived for the expression
1
x0

+
1
x1

an effective upper bound of the form ce−d(K+L),

where c and d are positive constants. He generalizes Steiner’s approach and derives

1. A generalized inequality for the ratio
K + L

K
;

2. A numerical lower bound for K, from which it follows that
K + L

K
must be a convergent

from the continued fraction expansion of δ;

3. An upper bound for K by applying a theorem of Laurent, Mignotte and Nesterenko [LMN]
on linear forms in two logarithms;

4. A lower bound for the partial quotients in the continued fraction expansion of δ.

Steiner’s original numerical verification finally shows that the only 2-cycle that satisfies these
conditions is the trivial 2-cycle {1, 2, 1, 2}.

This approach however fails to prove the nonexistence of m-cycles for m > 2, because then the
coefficient d in Simons’ upper bound becomes negative, which makes the upper bound ineffective.

Many partial results on the (non)existence of cycles for the 3n + 1-problem, as well as for gen-
eralizations, have been conjectured and proved by applying a scala of theoretical methods, see
Lagarias [La] and Wirsching [Wi]. In particular, using transcendence methods like we do, Brox
[Br] showed that there are only finitely many m-cycles with m < 2 logK, and from that he derived
the result that for each m there are only finitely many m-cycles (see Theorem 3(a) below).

1.5 Lower and upper bounds on cycle elements and lengths

In this paper we extend the cited results of Steiner [St] and Simons [Si], and prove that for each
m there are only finitely many m-cycles. Indeed, extending the result of Brox [Br], for m-cycles
we derive explicit upper bounds, depending only on m, for the values of K, L and xmin.

By doing extensive computations we also derive new lower bounds for these values. Then, com-
bining upper and lower bounds, we prove that there exist no nontrivial m-cycles for m ≤ 75. For
m = 76 and m = 77 we give possible solutions, which will be excluded when exterior computations
á la [OS] and [Ro] lead to new values for X0. For m ≥ 78 we derive explicit lower and upper
bounds for the cycle length and for the numbers in the cycle.

Our main result is the following theorem.
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Theorem 3 (Main Theorem)
For an m-cycle for the 3n+ 1-problem, let K,L, xmin be defined as above.

(a) (Brox [Br]) For any m there are only finitely many m-cycles.

(b) For 1 ≤ m ≤ 75 there do not exist nontrivial m-cycles.

(c) For 76 ≤ m ≤ 77 the only possible nontrivial m-cycles satisfy xmin > 5.7646 · 1018 and

m K = L = xmin <

76 117 972 833 293 231 014 69 009 683 580 368 485 6.2044 · 1018

124 207 383 220 472 977 72 656 661 496 678 846 1.0825 · 1019

130 441 933 147 714 940 76 303 639 412 989 207 4.2381 · 1019

77 117 972 833 293 231 014 69 009 683 580 368 485 6.2860 · 1018

124 207 383 220 472 977 72 656 661 496 678 846 1.0967 · 1019

130 441 933 147 714 940 76 303 639 412 989 207 4.2939 · 1019

254 649 316 368 187 917 148 960 300 909 668 053 8.7355 · 1018

(d) For m ≥ 78 the possible nontrivial m-cycles satisfy

if 78 ≤ m ≤ 90 then
1.1173 · 1017 < K < 1.3993mδm < e0.46057m+logm+0.33593,
6.1715 · 1016 < L < 0.81850mδm < e0.46057m+logm−0.20028,
5.7646 · 1018 < xmin < 339.14m2δm < e0.46057m+2 logm+5.8265,

if 91 ≤ m ≤ 515 619 then
7.5311 · 1011 < K < 1.4784mδm < e0.46057m+logm+0.39095,
4.4054 · 1011 < L < 0.86480mδm < e0.46057m+logm−0.14525,
5.7646 · 1018 < xmin < 5.1825 · 107m2δm < e0.46057m+2 logm+17.764,

if 515 620 ≤ m ≤ 527 875 034 then
9.0240 · 108 < K < 15.109mδm < e0.46057m+logm+2.7153,
5.2787 · 108 < L < 8.8379mδm < e0.46057m+logm+2.1791,

5.7646 · 1018 < xmin < e6.1260m,

if m ≥ 527 875 035 then
1.7095m < K < 15.108mδm < e0.46057m+logm+2.7152,

m ≤ L < 8.8372mδm < e0.46057m+logm+2.1790,
5.7646 · 1018 < xmin < e6.1255m.

In the cases 91 ≤ m ≤ 527 875 034 the lower bounds can be a bit more fine-tuned (see Corollary
11 below). The upper bounds in terms of powers of e are provided to ease comparison.

We expect that, with current technology and efforts, m = 76 and m = 77 can be expected to be
solved within 30 years, and that m = 78 and beyond may take considerably longer to be finished.

2 Conditions for the existence of an m-cycle

2.1 The chain equation

We first describe an m-cycle in more detail.

The existence of ki successive odd numbers starting with xi implies that xi ≡ −1 (mod 2ki), i.e.
xi = 2kiai − 1 for some integer ai ≥ 1. Going up from a local minimum xi to the next local
maximum yi is now expressed in the formula yi = 3kiai − 1. Then going down to the next local
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minimum xi+1 is done by yi = 2`ixi+1 (with xm = x0). Putting this together we arrive at the
’chain equation’

3kiai − 1 = 2ki+1+`iai+1 − 2`i

for i = 0, 1, ...,m − 1. If we put xm = x0, i.e. am = a0 and km = k0, we impose the existence of
an m-cycle.

Note that the chain equation with m = 1 is at the heart of Steiner’s result [St]. From now on we
take m ≥ 2.

2.2 Integral and rational solutions

When we fix ki, `i in the chain equation, we have m linear equations in the m variables ai. We
get the ’matrix equation’

M


a0

a1

...
am−1

 =


2`0 − 1
2`1 − 1

...
2`m−1 − 1

 ,

with the matrix M defined as

M =



−3k0 2k1+`0 0 · · · 0

0 −3k1 2k2+`1
. . .

...
...

. . . . . . . . . 0

0 0
. . . −3km−2 2km−1+`m−2

2k0+`m−1 0 · · · 0 −3km−1


.

Put

∆ = 2K+L − 3K .

Then det(M) = (−1)m−1∆. Applying linear algebra, in fact using an argument of Böhm and
Sontacchi [BS], we proceed to find the inverse matrix M−1. Put ∆M−1 = (mi,j)i,j=0,1,...,m−1,

αi,j =
j∗∑

h=i+1

kh, βi,j =
j∗∑

h=i+1

`h−1, where we take j∗ = j if i ≤ j, and j∗ = j + m if i > j, where

the indices of kh, `h are taken modulo m. Then we have mi,j = 2αi,j+βi,j3K−ki−αi,j , as is easily
verified. In particular mi,j > 0, and then the matrix equation and ai > 0 imply that ∆ > 0.

It follows that m-cycles are in one-to-one correspondence with solutions ki, `i, ai of the matrix
equation, with ki, `i, ai all positive integers. For a given combination of ki and `i at most one such
solution exists (there is exactly one solution with ai rational2, but in most cases the ai are not
integral). It follows that when we know upper bounds for K and L, there are only finitely many
rational solutions left that can in principle be enumerated.

2Rational solutions with common denominator q correspond to solutions of the 3n + q-problem.
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3 Conditions on K and m from a linear form in logarithms

3.1 Introducing Λ

Like in Steiner’s and Simons’ proofs [St], [Si], the basis of our final result is a linear form in
logarithms of integers, that for large m-cycles turns out to be too small to be possible. This linear
form is

Λ = (K + L) log 2−K log 3.

3.2 A first inequality for Λ

Lemma 4

0 < Λ <

m∑
i=1

1
xi
.

Proof. Rewrite the chain equation as

2ki+1+`i

3ki
ai+1

ai
= 1 +

2`i − 1
3kiai

.

Taking the product over all i = 0, 1, . . . ,m− 1, and using the cyclicity, we get

2K+L

3K
=
m−1∏
i=0

(
1 +

2`i − 1
3kiai

)
.

We now apply log(1 + x) < x to each term in the product, and thus obtain

0 < Λ =
m−1∑
i=0

log
(

1 +
2`i − 1
3kiai

)
<

m−1∑
i=0

2`i − 1
3kiai

.

The result now follows by 3kiai = yi + 1 > yi = 2`ixi+1 > (2`i − 1)xi+1, and the cyclicity. 2

We immediately have from Lemma 4

Corollary 5

0 < Λ <
m

xmin
≤ m

X0
.

Proof. Use Lemma 4 together with xi ≥ xmin ≥ X0. 2

3.3 Chaining

Now we will show that all xi are exponentially large in terms of K (or, equivalently, K + L). To
do so, we first show that all xi are of about the same size, by ’chaining’ them.

Put b =
1 +X−1

0

21/δ
. With the present value of X0 we have b = 0.64576 . . .. In fact, the dependence

on X0 is negligible.
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Lemma 6
For all i = 0, 1, . . . ,m− 1 we have xi+1 < bδxδi .

Proof. We have

xi+1 =
yi
2`i

<
yi + 1

2`i
=

3kiai
2`i

≤ 3ki

2
ai =

3ki

2
xi + 1

2ki
=
(

3
2

)ki xi + 1
2

=
1
2
(
2ki
)δ−1

(xi + 1).

Now use ai ≥ 1 and xi ≥ X0 to get

xi+1 <
1
2
(
2kiai

)δ−1
(xi + 1) =

1
2

(xi + 1)δ ≤ 1
2
(
1 +X−1

0

)δ
xδi = bδxδi .

2

Note that the inequality of Lemma 6 holds cyclically. As a result we can estimate all xi in terms
of one xi of our choice, say x0.

3.4 Another inequality for Λ

Put

cm = 2
m
δ

δ−1
δm−1 b

δ
δ−1−

m
δm−1 .

With the present value of X0 we find that cm decreases from c2 = 0.76479 . . . to bδ/(δ−1) =
0.30576 . . .. When we also let X0 tend to infinity, we get cm → 2−1/(δ−1) = 0.30576 . . .. Anyway,
cm < 0.30577 for m ≥ 30.

As a consequence of Lemmas 4 and 6 we can now estimate Λ in terms of its coefficients, i.e. K.

Lemma 7

0 < Λ < mcm2−
δ−1
δm−1K .

Proof. Lemma 6 implies xi < bδ+δ
2+...+δixδ

i

0 for i = 1, 2, . . . ,m− 1. Hence

m−1∏
i=0

xi < b(m−1)δ+(m−2)δ2+...+δm−1
x1+δ+δ2+...+δm−1

0 = b
δ
δ−1 ( δm−1

δ−1 −m)x
δm−1
δ−1

0 .

On the other hand, also

m−1∏
i=0

xi =
m−1∏
i=0

xi + 1
1 + x−1

i

≥ (1 +X−1
0 )−m

m−1∏
i=0

2kiai ≥ (1 +X−1
0 )−m2K ,

where we simply estimated ai ≥ 1. Hence

x
− δm−1

δ−1
0 < (1 +X−1

0 )mb
δ
δ−1 ( δm−1

δ−1 −m)2−K = c
δm−1
δ−1
m 2−K .

Now we choose x0 = xmin, which we can do because of the cyclicity. Corollary 5 to Lemma 4 then
shows that

0 < Λ <
m

xmin
< mcm2−

δ−1
δm−1K .
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2

Though strictly speaking the inequality of Lemma 7 depends on the value of X0, this dependence
is negligible.

4 Conditions on K and m from continued fractions

4.1 A useful lemma

A consequence of Corollary 5 to Lemma 4 is we have sharp lower and upper bounds for the ratios
K + L

K
,
K + L

L
and

K

L
. This is useful not only in this section but also further in this paper.

Lemma 8

δ K < K + L < 1.000001 δ K,

0.999999
δ

δ − 1
L < K + L <

δ

δ − 1
L,

0.999999
1

δ − 1
L < K <

1
δ − 1

L.

Proof. By Corollary 5 and the present value of X0 we have

0 < K + L−Kδ < m

X0 log 2
≤ K

X0 log 2
< 10−18K,

and the inequalities readily follow. 2

4.2 Continued fraction results

Recall that we denote by
pn
qn

the nth convergent to δ. Continued fraction theory shows that

convergents are best approximations, i.e. any other approximation with smaller denominator is
worse. Further necessary and sufficient inequalities for convergents are available. Indeed, we have
the following results, the proofs of which can be found in many introductory texts on number
theory (see e.g. [HW, Chapter 10]).

Lemma 9
(a) If

p

q
is a rational approximation to δ satisfying |p− qδ| < 1

2q
, then

p

q
is a convergent.

(b) |pn − qnδ| >
1

qn + qn+1
>

1
(an+1 + 2)qn

.

(c) If
p

q
is a rational approximation to δ, and if q ≤ qn, then |p− qδ| ≥ |pn − qnδ|.

(d) If n is odd then pn − qnδ > 0; if n is even then pn − qnδ < 0.

4.3 A generalization of Crandall’s Lemma to m-cycles

With Corollary 5 we now can derive a result like Crandall’s Lemma 1, which gives a lower bound
for K that depends on m.
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Lemma 10
If qn + qn+1 ≤ (log 2)

X0

m
, then K > qn.

Proof. Assume K ≤ qn. By Lemma 9(c) and (b)

Λ = (log 2)|(K + L)−Kδ| ≥ (log 2)|pn − qnδ| >
log 2

qn + qn+1
≥ m

X0
,

which contradicts Corollary 5. 2

Applying this with for each m the maximal n that satisfies the condition, leads to the following
result.

Corollary 11
If m ≤ 6 then K > q34 > 2.6711× 1017.
If 7≤ m ≤ 10 then K > q33 > 1.3044× 1017.
If 11≤ m ≤ 29 then K > q32 > 6.2345× 1015.
If 30≤ m ≤ 333 then K > q31 > 5.7509× 1015.
If 334≤ m ≤ 640 then K > q30 > 4.8361× 1014.
If 641≤ m ≤ 4 367 then K > q29 > 4.3116× 1014.
If 4 368≤ m ≤ 8 262 then K > q28 > 5.2449× 1013.
If 8 263≤ m ≤ 62 412 then K > q27 > 1.1571× 1013.
If 62 413≤ m ≤ 225 312 then K > q26 > 6.1624× 1012.
If 225 313≤ m ≤ 345 300 then K > q25 > 5.4093× 1012.
If 345 301≤ m ≤ 648 401 then K > q24 > 7.5311× 1011.
If 648 402≤ m ≤ 4 486 354 then K > q23 > 1.3752× 1011.
If 4 486 355≤ m ≤ 19 683 486 then K > q22 > 6.5470× 1010.
If 19 683 487≤ m ≤ 55 451 899 then K > q21 > 6.5868× 109.
If 55 451 900≤ m ≤ 312 750 582 then K > q20 > 6.1892× 109.
If 312 750 583≤ m ≤ 527 875 034 then K > 9.0240× 108.
If 527 875 035 ≤ m then K > 1.7095m.

Proof. All lines but the last two follow immediately from Lemma 10. The one but last line is
Corollary 2 to Crandall’s original Lemma 1. The last line follows by Lemma 8 from the trivial
observation that L ≥ m. 2

Note that the bounds for m in Corollary 11 depend heavily on the value of X0. Also note that
Corollary 11 implies K > 6.8580 · 1016 1

m .

5 Application of Transcendence Theory

Now that we know that Λ is exponentially small in terms of its coefficients, we can invoke deep
but explicit results from transcendence theory, which tell us that linear forms in logarithms of
integers cannot be too small in terms of their coefficients. Since Steiner published his paper
[St] with essentially the same idea of applying transcendence theory to prove the nonexistence of
nontrivial 1-cycles, transcendence theory has made substantial progress. For general linear forms
x log a+y log b with x, y ∈ Z and a, b ∈ N the best results today are the result of Laurent, Mignotte
and Nesterenko [LMN] for small x, y, and for large x, y that of Matveev [Ma] (see also Nesterenko
[Ne]). For our specific case x log 2 + y log 3 however, the result of Rhin [Rh] is best. From it we
derive the following estimate.

Lemma 12

Λ > e−13.3(0.46057+logK).
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Proof. We apply the Proposition on p. 160 of [Rh] with u0 = 0, H = u1 = K +L, and u2 = −K.
Together with Lemma 8 the result follows. 2

As a consequence of Lemma 12 we can also estimate the global minimum of an m-cycle in terms
of K.

Corollary 13

xmin < me13.3(0.46057+logK).

Proof. Apply Corollary 5 and Lemma 12. 2

6 Upper bounds for K, L and xmin

6.1 Initial upper bound

Clearly Lemmas 7 and 12 are contradictory when K is large enough. In other words, they provide
an upper bound for K, and then by Lemma 8 and Corollary 13 also for L and xmin.

Lemma 14 Let x = K1(m) be the largest solution of

e−13.3(0.46057+log x) = mcm2−
δ−1
δm−1x.

Then

K < K1(m).

Proof. Immediate from Lemmas 7 and 12 and the definition of K1(m). 2

Let k1(m) = K1(m)/(mδm). Note that k1(m) is a decreasing function that for increasing m tends
to the constant 13.3 log δ

log 2(δ−1) = 15.107 . . . as m→∞. Indeed:

m k1(m) < K1(m) < m k1(m) < K1(m) <

2 61.456 3.0877 · 102 100 000 15.113 1.1981 · 1020 008

10 35.843 3.5858 · 104 515 619 15.109 3.0475 · 10103 140

63 19.158 4.8181 · 1015 515 620 15.109 4.8301 · 10103 140

64 19.102 7.7350 · 1015 1 000 000 15.108 1.4816 · 10200 026

100 17.798 1.7876 · 1023 10 000 000 15.108 1.2429 · 102 000 198

511 15.739 1.3035 · 10106 100 000 000 15.108 2.1457 · 1020 001 908

512 15.738 2.0698 · 10106 527 875 034 15.108 7.1282 · 10105 585 041

1 000 15.453 1.6144 · 10204 527 875 035 15.108 1.1298 · 10105 585 042

10 000 15.150 2.3460 · 102 005 1 000 000 000 15.108 5.0463 · 10200 019 001

The dependence of K1(m) on X0 is negligible.

For each m we now have proved Theorem 3(a), that there are only finitely many m-cycles. More-
over, we can derive explicit upper and lower bounds for K, L and xmin, as stated in Theorem 3(d).
For m ≤ 515 619 we can obtain better results in the next section.

Proof of Theorem 3(d) for m ≥ 515 620. The upper bound for K follows from Lemma 14, and
the observation that k1 is a decreasing function of m. The lower bound for K follows by Corollary
11. The bounds for L and xmin follow by combining this with Lemma 8 and Corollary 13. 2

Moreover, we can combine Lemma 14 with the generalized Crandall Lemma 10, to prove that for
small m there are no solutions at all. The next lemma proves a part of Theorem 3(b).
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Lemma 15
There are no nontrivial m-cycles for 2 ≤ m ≤ 63.

Proof. By Lemma 14, for m ≤ 63 we have K < K1(m) ≤ K1(63) < 4.8181 ·1015. This contradicts
the K > 5.7509 · 1015 from Corollary 11 to the generalized Crandall Lemma 10. 2

Note that Corollary 2 to Crandall’s original Lemma 1 gives a result only for m ≤ 30.

The maximum value of m in Lemma 15 does depend heavily on the value of X0, in the sense that
any substantial improvement of the value of X0 immediately leads to an improvement of the upper
bound for m for which the proof works.

6.2 Reduced upper bound

Next we use, like Steiner [St], a continued fraction argument to find a better upper bound for K.
We computed the continued fraction of δ up to a200 001. Using Mathematica 7.0 on a 2.1GHz Intel
Core2 Duo T7500 processor this computation took less than 5 seconds.

Let x = J2(m) be the largest solution of

mcm2−
δ−1
δm−1x =

log 2
2x

.

Lemmas 7 and 9(a) imply that
K + L

K
is a convergent to δ whenever K > J2(m). Note that only

convergents with odd index are of interest, as the sign of pn − qnδ alternates (Lemma 9(d)), and
we have Λ > 0.

In view of Lemma 9(b), of particular interest are partial quotients an that are champions in the
sense that ak < an whenever k < n, for even k, n.

For each m let n(m) be the index n of the smallest champion for which K1(m) < qn−1. Then we
define A(m) = max{a0, a2, . . . , an(m)−2}. Clearly A(m) is the champion before n(m). Indeed, we
have

n(m) A(m) K1(m) < qn(m)−1 >

64≤ m ≤ 511 218 55 1.3035 · 10106 1.3133 · 10106

512≤ m ≤ 551 230 100 1.4043 · 10114 1.7807 · 10114

552≤ m ≤ 816 330 964 2.0804 · 10167 2.6341 · 10167

817≤ m ≤ 1 340 528 2 436 2.1843 · 10272 2.3119 · 10272

1 341≤ m ≤ 7 009 2 764 3 308 9.1127 · 101 406 1.2197 · 101 407

7 010≤ m ≤ 11 143 4 312 4 878 1.0938 · 102 234 1.4973 · 102 234

11 144≤ m ≤ 54 234 21 150 8 228 5.5425 · 1010 853 8.2400 · 1010 853

54 235≤ m ≤ 315 502 122 416 59 599 1.1752 · 1063 113 1.2759 · 1063 113

315 503≤ m ≤ 515 619 200 002 104 733 3.0475 · 10103 140 3.5522 · 10103 140

For m ≥ 515 620 we can in principle find corresponding values for A(m) when we compute more
partial quotients.

With the part of the continued fraction that we have at our disposal, we can derive a sharper
upper bound for all m ≤ 515 619, as follows. Let x = K2(m) be the largest solution of

mcm2−
δ−1
δm−1x =

log 2
(A(m) + 2)x

.

Note that j2(m) = J2(m)/(mδm) is a bounded function, that tends to log δ/((δ − 1) log 2) =
1.1358 . . . when m → ∞. Also put k2(m) = K2(m)/(mδm). As we don’t know how A(m) will
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grow when m increases, we don’t know the exact behaviour of k2(m), but most probably it will
also tend to log δ/((δ − 1) log 2) = 1.1358 . . . when m→∞. Indeed:

m j2(m) < J2(m) < k2(m) < K2(m) <

64 1.4664 5.9379 · 1014 1.5988 6.4742 · 1014

67 1.4547 2.4553 · 1015 1.5810 2.6686 · 1015

68 1.4510 3.9396 · 1015 1.5754 4.2776 · 1015

90 1.3881 1.2542 · 1020 1.4817 1.3388 · 1020

91 1.3859 2.0068 · 1020 1.4784 2.1408 · 1020

100 1.3677 1.3737 · 1022 1.4518 1.4582 · 1022

511 1.1964 9.9079 · 10104 1.2126 1.0043 · 10105

512 1.1963 1.5734 · 10105 1.2153 1.5984 · 10105

551 1.1927 1.0669 · 10113 1.2103 1.0827 · 10113

552 1.1926 1.6940 · 10113 1.2203 1.7333 · 10113

816 1.1766 1.5769 · 10166 1.1953 1.6020 · 10166

817 1.1765 2.5023 · 10166 1.1980 2.5480 · 10166

1 000 1.1701 1.2224 · 10203 1.1876 1.2407 · 10203

1 340 1.1625 1.6517 · 10271 1.1756 1.6703 · 10271

1 341 1.1625 2.6198 · 10271 1.1761 2.6506 · 10271

7 009 1.1422 6.8625 · 101 405 1.1448 6.8782 · 101 405

7 010 1.1422 1.0879 · 101 406 1.1449 1.0905 · 101 406

10 000 1.1405 1.7660 · 102 004 1.1424 1.7690 · 102 004

11 143 1.1401 8.2326 · 102 232 1.1418 8.2450 · 102 232

11 144 1.1401 1.3050 · 102 233 1.1419 1.3071 · 102 233

54 234 1.1369 4.1685 · 1010 852 1.1373 4.1698 · 1010 852

54 235 1.1369 6.6069 · 1010 852 1.1374 6.6097 · 1010 852

100 000 1.1365 9.0096 · 1020 006 1.1368 9.0116 · 1020 006

315 502 1.1361 8.8364 · 1063 111 1.1362 8.8371 · 1063 111

315 503 1.1361 1.4006 · 1063 112 1.1362 1.4007 · 1063 112

515 619 1.1361 2.2915 · 10103 139 1.1361 2.2916 · 10103 139

The next lemma now gives a better upper bound for K in the range for which the continued
fraction argument can be applied, given the part of the continued fraction we have computed.

Lemma 16
For 64 ≤ m ≤ 515 619 a possible m-cycle satisfies K < K2(m).

Proof. Note that J2(m) < K2(m) for all m, so we may assume K > J2(m). Then by the definition

of J2, Lemma 7 implies Λ <
log 2
2K

, and so Lemma 9(a) shows that
K + L

K
=
pn
qn

for some odd n.

From Lemma 14 we have K < K1(m) < qn(m)−1, implying n ≤ n(m) − 2. Hence an+1 ≤ A(m).
The definition of K2, Lemmas 9(b) and 7 then imply K < K2(m). 2

A computation3 shows that there are only 68 values of m between 64 and 515 619 for which there
is a convergent

pn
qn

with odd index and J2(m) < qn < K2(m). In all other cases qn > J2(m)

implies qn > K2(m). As J2 and K2 are relatively close, we do not elaborate.

As a consequence of Lemma 16 we can now prove a further part of Theorem 3(d), giving improved
upper bounds for K, L and xmin in the case of 91 ≤ m ≤ 515 619. For m ≤ 90 we wil achieve even
better results in the next section.

Proof of Theorem 3(d) for 91 ≤ m ≤ 515 619. The upper bound for K follows from Lemma
16, and the observation that k2(m) < 1.4784 (note that k2(m) is a decreasing function, except
when A(m) jumps to the next champion). The lower bound for K follows by Corollary 11. The
bounds for L follow by combining this with Lemma 8.

3In fact, this part of our computations was by far the most time consuming, taking 92 minutes.
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For xmin we now can find a rather sharp upper bound, as follows. Let n be the index such that
qn−1 < K ≤ qn. By K < K2(m) ≤ K2(515 619) < 2.2916 · 10103 139 < 7.5013 · 10103 139 < q199 998

we have n ≤ 199 998. From the continued fraction we find that for this range (an+ 1)(an+1 + 2) ≤
24 298 288. Now Corollary 5 and Lemma 9(c) and (b) show that xmin <

m

Λ
<

m

(log 2)|pn − qnδ|
<

m(an+1 + 2)qn
log 2

<
m(an+1 + 2)(an + 1)qn−1

log 2
<
m(an+1 + 2)(an + 1)K

log 2
<

24 298 288
log 2

mK, where

we used qn = anqn−1 + qn−2 < (an + 1)qn−1. The bound for xmin now follows at once. 2

The improvement we reached here for the bound of xmin is substantial. Though the improvement
of the bounds for K and L is to some extent marginal (we cannot improve on the dominating
term δm), the improvement becomes significant for small m, when we combine Lemma 16 with
the generalized Crandall Lemma 10, to get a result improving on Lemma 15. The next lemma
proves another part of Theorem 3(b).

Lemma 17
There are no nontrivial m-cycles for 2 ≤ m ≤ 68.

Proof. In view of Lemma 15 we assume m ≥ 64. By Lemma 16, for m ≤ 68 we have K <
K2(m) ≤ K2(68) < 4.2776 · 1015. This contradicts K > 5.7509 · 1015 from Corollary 11. 2

The maximum value of m in Lemma 17 does depend on the value of X0, in the sense that any
substantial improvement of the value of X0 leads to an improvement of the upper bound for m
for which the proof works.

7 Elimination of small solutions

7.1 Convergents

The classic approach now is to show, based on Lemma 9(a) as well as on refinements for e.g.
”secondary convergents”, that possible solutions in certain ranges are (secondary) convergents,
and then to check all such (secondary) convergents for Corollary 5. Instead we will use an ap-
proximation lattice method, that can be seen as a more powerful variant of the continued fraction
method. See [dW, Section 1.4 and Chapter 3] for some background on approximation lattices.

7.2 Lattices

We look for solutions in an ”approximation lattice”, as follows.

For a vector x =
(
x1

x2

)
we define the norm ‖x‖ as ‖x‖ = max{|x1|, |x2|}.

Put C =
⌊
X0

m

log 2
2

K2(m)
⌋

. Now let

Γ =
(

1 0
[Cδ] C

)
,

where [·] stands for rounding towards the nearest integer. Then we look at the lattice of the
Z-linear combinations of the columns of Γ. For a solution K,L satisfying Corollary 5, Lemma 7
and Lemma 16 we look at the lattice point

x = Γ
(
−K
K + L

)
=
(
−K
Λ0

)
,
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where Λ0 = (K + L)C −K[Cδ] is an approximation of
C

log 2
Λ. Indeed, by Lemma 16 we have

∣∣∣∣Λ0 −
C

log 2
Λ
∣∣∣∣ ≤ K |Cδ − [Cδ]| ≤ 1

2
K2(m).

It follows by Corollary 5 and the definition of C that

|Λ0| ≤
1
2
K2(m) +

C

log 2
|Λ| < 1

2
K2(m) +

C

log 2
m

X0
≤ K2(m).

It follows that we only have to search for lattice points with norm at most K2(m).

To achieve this efficiently, we compute (by the Euclidean, i.e. continued fraction, algorithm) a
reduced basis of the lattice. Let Γred be a matrix with as columns this reduced basis. The lattice
point x can be expressed in the reduced basis as x = Γredz for some z ∈ Z2. Due to the reducedness

of the lattice basis, the number of points to be searched is approximately
K2(m)2

C
≈ m

X0
K2(m). A

brute force search for points z ∈ Z2 such that ‖Γredz‖ ≤ K2(m) is therefore efficient when K2(m)

is not much larger than
X0

m
. Each lattice point found can be checked for fulfilling Corollary 5 and

Lemma 7.

Doing this search for 69 ≤ m ≤ 90 we found the following results.

Lemma 18
(a) With 69 ≤ m ≤ 75 there are no nontrivial m-cycles.
(b) With 76 ≤ m ≤ 77 the only possible nontrivial m-cycles satisfy

m K L falls when X0 ≥ year

76, 77 117 972 833 293 231 014 69 009 683 580 368 485 {5.39, 5.46} · 260 2011
76, 77 124 207 383 220 472 977 72 656 661 496 678 846 {9.39, 9.52} · 260 2015
76, 77 130 441 933 147 714 940 76 303 639 412 989 207 {36.8, 37.3} · 260 2040

77 254 649 316 368 187 917 148 960 300 909 668 053 7.58 · 260 2013

(c) With 78 ≤ m ≤ 90 the only possible nontrivial m-cycles satisfy
m # solutions K ≥ K ≤ falls when X0 ≥ year

78 6 111 738 283 365 989 051 397 560 349 370 386 783 447 · 260 2409
79 9 111 738 283 365 989 051 658 444 215 665 816 663 452 · 260 2414
80 12 111 738 283 365 989 051 1 049 770 015 108 961 483 458 · 260 2419
81 19 111 738 283 365 989 051 1 453 564 914 406 590 229 464 · 260 2424
82 33 111 738 283 365 989 051 2 515 804 029 370 035 638 469 · 260 2429

m # solutions K ≥ K ≤ m # solutions K ≥ K ≤
83 52 1.1173 · 1017 4.6403 · 1018 87 352 1.1173 · 1017 2.8240 · 1019

84 86 1.1173 · 1017 6.6281 · 1018 88 565 1.1173 · 1017 4.6006 · 1019

85 136 1.1173 · 1017 1.0604 · 1019 89 909 1.1173 · 1017 7.7693 · 1019

86 220 1.1173 · 1017 1.7102 · 1019 90 1 456 1.1173 · 1017 1.1442 · 1020

For 76 ≤ m ≤ 77 we give with each solution the minimal value for X0 that has to be reached
to show that the solution does not correspond to an m-cycle. We also give the year in which
this is expected to happen when the current rate of checking per day 3.5 · 1015 values for xmin is
continued, according to [OS], resuming the computations on January 1, 2011.

For 78 ≤ m ≤ 90 we only give for each m the number of solutions found, and the minimal and
maximal K. For m ≤ 82 we also give the minimal value for X0 that has to be reached to show that
the solutions do not correspond to an m-cycle, and the year in which this is expected to happen.
For m ≥ 83 this year is always further away than 4400.

The entire computation for the proof of Lemma 18 took 3.2 seconds.
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As a result we can now complete the proof of Theorem 3.

Proof of Theorem 3(b), (c) and (d) for m ≤ 90. (b) follows at once from Lemma 18(a). The
values in (c) and upper bound in (d) for K follow from Lemma 18. The lower bound for K follows
by Lemma 18. The bounds for L follow by combining this with Lemma 8. In (c) the upper bound
for xmin is derived from Corollary 5.

In (d) the upper bound for xmin is derived as in the above proof of the other part of Theorem
3(d), as follows. Let n be the index such that qn−1 < K ≤ qn. By K < K2(m) ≤ K2(90) <
1.3388 · 1020 < 2.0563 · 1020 < q43 we have n ≤ 43. From the continued fraction we find that
(an + 1)(an+1 + 2) ≤ 168. Hence xmin <

168
log 2mK. 2

8 Conclusion

In Theorem 3, it is of interest to note that the border m = 75/76 between (b) and (c) is directly
related to the size of the lower bound X0 for xmin that comes from external brute force computa-
tions, see [OS] and [Ro]. We indicated above when this border will be crossed, assuming that these
computations continue at the present speed, and no new ideas emerge. We expect, as indicated
in Lemma 18, that m = 76 and m = 77 can be expected to be solved within 25 years, and that
m = 78 and beyond will take a considerably larger effort to finish.

The border m = 77/78 between Theorem 3(c) and (d) depends only on the amount of space one
is willing to spend on listing candidate solutions that cannot yet be ruled out.

The border m = 90/91 in Theorem 3(d) depends directly on X0, but it depends also on the
amount of computation one is willing to spend on finding small lattice points. As the difference
in the upper bounds between (c) and (d) is in the constants only, we see sofar no need to do more
extensive computations.

The border m = 515 619/515 620 in Theorem 3(d) is directly related to how far one wishes to
compute the continued fraction expansion of δ. Note that the difference in the upper bounds is
substantial.

The border m = 343 118 772/343 118 773 in Theorem 3(d) was introduced only because it has some
impact on the lower bounds for K and L. It is therefore not of much significance.

It seems that with the present techniques one cannot go much further. To show the nonexistence
of nontrivial m-cycles for essentially larger ranges of m an entirely new idea seems to be needed.

Note that if certain values for K and L can not be excluded by the approximation lattice method,
they can in principle be analyzed for an integer solution of the matrix equation. Without any
knowledge on ki and `i such an analysis is very inefficient. Computational and heuristical evidence
indicates that for given m and K the worst case values for ki and `i can be estimated, and then
for any m an efficient analysis of possible m-cycles may become feasible. We believe that Lemma
7 is almost sharp for the worst case, in the sense that at best we expect that the factor mcm
may be improved to a constant, but the exponential dependence on m in the term 2−

δ−1
δm−1K

seems unavoidable. Given the state of affairs in transcendence theory, we think that further
improvement to Theorem 3 should come from sharpening the lower bounds for K. We leave this
for future research.
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